biologi
Sabtu, 11 Mei 2013
SISTEM RESPIRASI PADA MANUSIA
Sistem respirasi pada manusia adalah proses penggunaan oksigen di dalam sel untuk menghasilkan energi dan pada akhir proses ini, dihasilkan limbah berupa gas karbondioksida. Bernapas adalah proses memasukkan dan mengeluarkan udara dari paru-paru.
Organ-Organ Pernapasan
Sistem Respirasi |
1. Hidung
Hidung merupakan organ pernapasan yang letaknya paling luar. Manusia menghirup udara melalui hidung. Pada permukaan rongga hidung terdapat rambut-rambut halus dan selaput lendir yang berfungsi menyaring udara yang masuk dari debu atau benda lainnya. Di dalam rongga hidung terjadi penyesuaian suhu dan kelembapan udara sehingga udara yang masuk ke paru-paru tidak terlalu kering ataupun terlalu lembap.
Hidung |
Udara bebas tidak hanya mengandung oksigen saja, namun juga gas-gas yang lain. Misalnya, karbon dioksida (CO2), belerang (S), dan nitrogen (N2). Gas-gas tersebut ikut terhirup, namun hanya oksigen saja yang dapat berikatan dengan darah. Selain sebagai organ pernapasan, hidung juga merupakan indra pembau yang sangat sensitif. Dengan kemampuan tersebut, manusia dapat terhindar dari menghirup gas-gas yang beracun atau berbau busuk yang mungkin mengandung bakteri dan bahan penyakit lainnya. Dari rongga hidung, udara selanjutnya akan mengalir ke tenggorokan.
2. Tenggorokan
Tenggorokan merupakan bagian dari organ pernapasan. Tenggorokan berupa suatu pipa yang dimulai dari pangkal tengorokan (laring), batang tenggorokan (trakea), dan cabang batang tenggorokan (bronkus).
Tenggorokan |
- Pangkal Tenggorokan (Laring)
Setelah melewati hidung, udara masuk menuju pangkal tenggorokan (laring) melalui faring. Faring terletak di hulu tenggorokan dan merupakan persimpangan antara rongga mulut ke kerongkongan dan rongga hidung ke tenggorokan. Setelah melalui laring, udara selanjutnya menuju ke batang tenggorokan (trakea).
Pada batang tenggorokan ini terdapat suatu katup epiglotis. Katup ini bekerja dengan cara membuka jika bernapas atau berbicara dan menutup pada saat menelan makanan. Adanya katup tersebut, udara akan masuk ke paru-paru dan makanan akan menuju lambung. Kita jangan makan sambil berbicara, hal tersebut dapat mengakibatkan makanan masuk ke paru-paru dan tenggorokan. Oleh karenanya, hindarilah makan sambil berbicara.
Pada laring, di bawah epiglotis, terdapat pita suara. Ketika udara melewati pita suara, pita suara akan bergetar dan menghasilkan suara. Hal ini terjadi ketika kamu berbicara.
- Batang Tenggorokan (Trakea)
Batang tenggorokan tersusun dari cincin-cincin tulang rawan dan terletak di depan kerongkongan. Batang tenggorokan memanjang dari leher ke rongga dada atas. Di dalam rongga dada, batang tenggorokan ini bercabang dua. Setiap cabangnya masuk menuju paru-paru kanan dan paruparu kiri.
- Cabang Batang Tenggorokan (Bronkus)
Cabang batang tenggorokan (bronkus) merupakan cabang dari trakea. Bronkus terbagi menjadi dua, yaitu yang menuju paru-paru kanan dan menuju paru-paru kiri. Bronkus bercabang lagi menuju bronkiolus. Masing-masing cabang tersebut berakhir pada gelembung paru-paru atau alveolus. Alveolus merupakan tempat terjadinya difusi oksigen ke dalam darah. Oleh karena itu, dinding alveolus mengandung banyak kapiler darah.
3. Paru-paru
Paru-paru terletak di dalam rongga dada. Antara rongga dada dan rongga perut terdapat suatu pembatas yang disebut diafragma. Pembatas ini bukan sekedar pembatas, tetapi berperan juga dalam proses pernapasan. Paru-paru terbagi menjadi paru-paru kanan dan paruparu kiri.
Paru-paru |
Paru-paru pada dasarnya merupakan cabang-cabang suatu saluran yang ujungnya bergelembung. Gelembunggelembung tersebut disebut alveoli (tunggal: alveolus). Dalam alveoli inilah sesungguhnya terjadi pertukaran gas-gas. Paru-paru kanan terdiri atas tiga belahan sedangkan paru-paru kiri hanya dua belahan. Paru-paru kanan lebih besar dibandingkan yang kiri.
Proses Pernapasan
Saat bernapas, udara dihirup melalui hidung. Udara yang dihirup mengandung oksigen dan juga gas-gas lain. Dari hidung, udara terus masuk ke tenggorokan, kemudian ke dalam paru-paru. Akhirnya, udara akan mengalir sampai ke alveoli yang merupakan ujung dari saluran. Oksigen yang terkandung dalam alveolus bertukar dengan karbon dioksida yang terkandung dalam darah yang ada di pembuluh darah alveolus melalui proses difusi.
Dalam darah, oksigen diikat oleh hemoglobin. Selanjutnya darah yang telah mengandung oksigen mengalir ke seluruh tubuh. Oksigen diperlukan untuk proses respirasi sel-sel tubuh. Gas karbon dioksida yang dihasilkan selama proses respirasi sel tubuh akan ditukar dengan oksigen. Selanjutnya, darah mengangkut karbon dioksida untuk dikembalikan ke alveolus paru-paru dan akan dikeluarkan ke udara melalui hidung saat mengeluarkan napas.
1. Jenis Pernapasan
- Pernapasan Dada
Pernapasan dada terjadi karena otot antartulang rusuk berkontraksi sehingga rusuk terangkat dan akibatnya volume rongga dada membesar. Membesarnya rongga dada ini membuat tekanan dalam rongga dada mengecil dan paru-paru mengembang. Pada saat paru-paru mengembang, tekanan udara di luar lebih besar daripada di dalam paruparu, akibatnya udara masuk.
Pernapasan Dada |
Sebaliknya, saat otot antartulang rusuk berelaksasi, tulang rusuk turun. Akibatnya, volume rongga dada mengecil sehingga tekanan di dalamnya pun naik. Pada keadaan ini paru-paru mengempis sehingga udara keluar.
- Pernapasan Perut
Pernapasan ini terjadi karena gerakan diafragma. Jika otot diafragma berkontraksi, rongga dada akan membesar dan paru-paru mengembang. Akibatnya, udara akan masuk ke dalam paru-paru. Saat otot diafragma relaksasi, diafragma kembali ke keadaan semula. Saat itu, rongga dada akan menyempit, mendorong paru-paru sehingga mengempis. Selanjutnya, udara dari paru-paru akan keluar.
Pernapasan Perut |
2. Kapasitas Paru-paru
Udara yang masuk dan keluar saat berlangsungnya proses pernapasan biasa dinamakan udara pernapasan atau volume udara tidal. Volume udara tidal orang dewasa pada pernapasan biasa kira-kira 500 mL. Jika kamu menarik napas dalam-dalam maka volume udara yang dapat kita tarik mencapai 1500 mL. Udara ini dinamakan udara komplementer. Jika kamu mengembuskannapas sekuat-kuatnya, volume udara yang dapat diembuskan juga sekitar 1500 mL. Udara ini dinamakan udara suplementer.
Meskipun telah mengeluarkan napas sekuatkuatnya, tetapi masih ada sisa udara dalam paru-paru yang volumenya kira-kira 1500 mL. Udara sisa ini dinamakan udara residu. Sekarang, kamu dapat menghitung kapasitas vital paru-paru. Kapasitas vital paru-paru adalah jumlah dari volume udara tidal, volume udara komplementer, dan volume udara suplementer. Selain itu, kamu juga dapat menghitung kapasitas total paru-paru yang merupakan jumlah dari kapasitas vital paru-paru dan udara residu.
Baca juga materi biologi tentang jaringan dan sistem pencernaan pada manusia.
DNA: Replikasi, transkripsi dan translasi
DNA membawa informasi genetik dan bagian DNA yang membawa ciri khas yang diturunkan disebut gen. Perubahan yang terjadi pada gen akan menyebabkan terjadinya perubahan pada produk gen tersebut. Gen sering juga diartikan sebagai ruas DNA yang menghasilkan produk gen yang berupa enzim yang dikenal dengan teori satu gen satu enzim. Karena enzim dapat merupakan kombinasi polipeptida..maka teori tersebut diubah menjadi satu gen satu polipeptida.
Konsep dasar menurunnya sifat secara molekuler adalah merupakan aliran informasi dari DNA ke RNA ke urutan asam amino. Konsep dasar ini disebut sebagai dogma genetik. Pada dogma genetik juga tercermin cara mempertahankan ciri khas supaya tetap sama melalui proses replikasi. Dogma genetik ini bersifat universal yang berlaku baik bagi prokariot maupun eukariot.
Replikasi DNA
Sebelum sel membelah, DNA harus direplikasi dalam fase S dari siklus sel. Proses replikasi melibatkan enzim polymerase. Proses ini melibatkan pembukaan utas ganda DNA, sehingga memungkinkan terjadinya perpasangan basa untuk membentuk utas baru. Pembentukan utas komplementer terjadi melalui perpasangan basa antara A dengan T dan G dengan C. Dalam replikasi DNA, setiap utas DNA lama berperan sebagai cetakan untuk membentuk DNA baru.
Model DNA Watson dan Crick menyatakan bahwa saat double heliks bereplikasi, masing-masing dari kedua molekul anak akan mempunyai satu untai lama yang erasal dari satu molekul induk dan satu untai yang baru. Model replikasi ini disebut model semikonservatif. Model lainnya adalah model konservatif dimana molekul induk tetap dan molekul baru disintesis sejak awal. Model ketiga disebut model dispersif yaitu bahwa keempat untai DNA, setelah replikasi double heliks, mempunyai campuran anatara DNA baru dan DNA lama.
Pengujian yang dilakukan oleh Meselson dan Stahl menunjukkan bahwa replikasi DNA terjadi secara semikonservatif. Daerah penggandaan bergerak sepanjang DNA induk membentuk replication fork. Pada daerah ini, kedua utas DNA yang baru, disintesis dengan bantuan sekelompok enzim, salah satunya adalah DNA polimerase. Sintesis DNA tidaklah berjalan secara kontinu pada kedua utas cetakan. Hal ini karena kedua utas DNA tersusun sejajar berlawanan arah atau antiparalel. Maka utas DNA baru akan tumbuh dari 5′ - 3′ sedang yang lainnya dari 3′ - 5′ pada cetakan. Sintesis dari 3′ - 5′ tidak mungkin dilakukan karena tidak ada DNA polymerase untuk arah 3′ - 5′.
Replikasi DNA pada cetakan 3′ - 5′ terjadi seutas demi seutas dengan arah 5′ - 3′ yang berarti replikasi berjalan meninggalkanreplication fork. Utas-utas pendek tersebut kemudian dihubungkan oleh enzim ligase DNA. Dalam replikasi DNA terdapat utas DNA yang disintesis secara kontinu yang terjadi pada cetakan 5′ - 3′. Utas DNA yang disintesis secara kontinu ini disebut utas utama atau leading strand. Sedangkan utas DNA baru yang disintesis pendek-pendek seutas-demi seutas disebut utas lambat atau lagging strand. Utas-utas pendek atau fragmen-fragmen pendek yang terbentuk disebut fragmen Okazaki.
Sintesis pada leading strand memerlukan molekul primer pada permulaan replikasi Setelah replication fork terbentuk, polymerase akan bekerja secara kontinu sampai utas DNA baru selesai direplikasi. Pada sintesis lagging strand, diperlukan enzim lain primase DNA. Setelah utas DNA terbuka untuk melakukan replikasi, dan setelah terbuka pada lagging strand, utas harus dijaga agar tetap terbuka. Jadi dalam proses replikasi DNA melibatkan beberapa protein baik berupa enzim maupun non-enzim yaitu :
Polimerase DNA : enzim yang berfungsi mempolimerisasi nukleotida-nukleotida
Ligase DNA : enzim yang berperan menyambung DNA utas lagging
Primase DNA : enzim yang digunakan untuk memulai polimerisasi DNA pada
lagging strand
Helikase DNA : enzim yang berfungsi membuka jalinan DNA double heliks
Single strand DNA-binding protein : mestabilkan DNA induk yang terbuka
Transkripsi
Transkripsi DNA merupakan proses pembentukan RNA dari DNA sebagai cetakan. Proses transkripsi menghasilkan mRNA, rRNA dan tRNA. Pembentukan RNA dilakukan oleh enzim RNA polymerase. Proses transkripsi terdiri dari 3 tahap yaitu :
- Inisiasi : enzim RNA polymerase menyalin gen, sehingga pengikatan RNA polymerase terjadi pada tempat tertentu yaitu tepat didepan gen yang akan ditranskripsi. Tempat pertemuan antara gen (DNA) dengan RNA polymerase disebut promoter. Kemudian RNA polymerase membuka double heliks DNA. Salah satu utas DNA berfungsi sebagai cetakan.
- Elongasi : Enzim RNA polymerase bergerak sepanjang molekul DNA, membuka double heliks dan merangkai ribonukleotida ke ujung 3′ dari RNA yang sedang tumbuh.
- Terminasi : terjadi pada tempat tertentu. Proses terminasi transkripsi ditandai dengan terdisosiasinya enzim RNA polymerase dari DNA dan RNA dilepaskan.
mRNA pada eukariota mengalami modifikasi sebelum ditranslasi, sedangkan pada prokariota misalnya pada bakteri, mRNA merupakan transkripsi akhir gen. mRNA yang baru ditranskrip ujung 5′nya adalah pppNpN, dimana N adalah komponen basa-gula nukleotida, p adalah fosfat. mRNA yang masak memiliki struktur 7mGpppNpN, dimana 7mG adalah nukleotida yang membawa 7 metil guanine yang ditambahkan setelah transkripsi. Pada ujung 3′ terdapat pNpNpA(pA)npA. Ekor poli A ini ditambahkan berkat bantuan polymerase poli (A). tetapi mRNA yang menyandikan histon, tidak memiliki poli A.
Hasil transkripsi merupakan hasil yang memiliki intron (segmen DNA yang tidak menyandikan informasi biologi) dan harus dihilangkan, serta memiliki ekson yaitu ruas yang membawa informasi biologis. Intron dihilangkan melalui proses yang disebut splicing. Proses splicing terjadi di nukleus.
Splicing dimulai dengan terjadinya pemutusan pada ujung 5′, selanjutnya ujung 5′ yang bebas menempelkan diri pada suatu tempat pada intron dan membentuk struktur seperti laso yang terjadi karena ikatan 5′-2′fosfodiester. Selanjutnya tempat pemotongan pada ujung 3 terputus sehingga dua buah ekson menjadi bersatu.
tRNA adalah molekul adaptor yang membaca urutan nukleotida pada mRNA dan mengubahnya menjadi asam amino. Struktur molekul tRNA adalah seperti daun semanggi yang terdiri dari 5 komponen yaitu
- Lengan aseptor: merupakan tempat menempelnya asam amino,
- Lengan D atau DHU: terdapat dihidrourasil pirimidin,
- Lengan antikodon: memiliki antikodon yang basanya komplementer dengan basa pada mRNA
- Lengan tambahan
- Lengan TUU: mengandung T, U dan C
Translasi
Pada prokariota yang terdiri dari satu ruang, proses transkripsi dan translasi terjadi bersama-sama. Translasi merupakan proses penerjemahan kodon-kodon pada mRNA menjadi polipeptida. Dalam proses translasi, kode genetic merupakan aturan yang penting. Dalam kode genetic, urutan nukleotida mRNA dibawa dalam gugus tiga - tiga. Setiap gugus tiga disebut kodon. Dalam translasi, kodon dikenali oleh lengan antikodon yang terdapat pada tRNA.
Mekanisme translasi adalah:
- Inisiasi. Proses ini dimulai dari menempelnya ribosom sub unit kecil ke mRNA. Penempelan terjadi pada tempat tertentu yaitu pada 5′-AGGAGGU-3′, sedang pada eukariot terjadi pada struktur tudung (7mGpppNpN). Selanjutnya ribosom bergeser ke arah 3′ sampai bertemu dengan kodon AUG. Kodon ini menjadi kodon awal. Asam amino yang dibawa oleh tRNA awal adalah metionin. Metionin adalah asam amino yang disandi oleh AUG. pada bakteri, metionin diubah menjadi Nformil metionin. Struktur gabungan antara mRNA, ribosom sub unit kecil dan tRNA-Nformil metionin disebut kompleks inisiasi. Pada eukariot, kompleks inisiasi terbentuk dengan cara yang lebih rumit yang melibatkan banyak protein initiation factor.
- Elongation. Tahap selanjutnya adalah penempelan sub unit besar pada sub unit kecil menghasilkan dua tempat yang terpisah . Tempat pertama adalah tempat P (peptidil) yang ditempati oleh tRNA-Nformil metionin. Tempat kedua adalah tempat A (aminoasil) yang terletak pada kodon ke dua dan kosong. Proses elongasi terjadi saat tRNA dengan antikodon dan asam amino yang tepat masuk ke tempat A. Akibatnya kedua tempat di ribosom terisi, lalu terjadi ikatan peptide antara kedua asam amino. Ikatan tRNA dengan Nformil metionin lalu lepas, sehingga kedua asam amino yang berangkai berada pada tempat A. Ribosom kemudian bergeser sehingga asam amino-asam amino-tRNA berada pada tempat P dan tempat A menjadi kosong. Selanjutnya tRNA dengan antikodon yang tepat dengan kodon ketiga akan masuk ke tempat A, dan proses berlanjut seperti sebelumnya.
- Terminasi. Proses translasi akan berhenti bila tempat A bertemu kodon akhir yaitu UAA, UAG, UGA. Kodon-kodon ini tidak memiliki tRNA yang membawa antikodon yang sesuai. Selanjutnya masuklah release factor (RF) ke tempat A dan melepaska rantai polipeptida yang terbentuk dari tRNA yang terakhir. Kemudian ribosom berubah menjadi sub unit kecil dan besar.
Langganan:
Postingan (Atom)